Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Malar J ; 23(1): 13, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195464

RESUMO

BACKGROUND: Plasmodium lacks an mRNA export receptor ortholog, such as yeast Mex67. Yeast Mex67 contains a nuclear transport factor 2 (NTF2)-like domain, suggesting that NTF2-like domain-containing proteins might be associated with mRNA export in Plasmodium. In this study, the relationship between mRNA export and an NTF2-like domain-containing protein, PBANKA_1019700, was investigated using the ANKA strain of rodent malaria parasite Plasmodium berghei. METHODS: The deletion mutant Δ1019700 was generated by introducing gene-targeting vectors into the P. berghei ANKA genome, and parasite growth and virulence were examined. To investigate whether PBANKA_1019700 is involved in mRNA export, live-cell fluorescence imaging and immunoprecipitation coupled to mass spectrometry (IP-MS) were performed using transgenic parasites expressing fusion proteins (1019700::mCherry). RESULTS: Deletion of PBANKA_1019700 affected the sexual phase but not the asexual phase of malaria parasites. Live-cell fluorescence imaging showed that PBANKA_1019700 localizes to the cytoplasm. Moreover, IP-MS analysis of 1019700::mCherry indicated that PBANKA_1019700 interacts with ubiquitin-related proteins but not nuclear proteins. CONCLUSIONS: PBANKA_1019700 is a noncanonical NTF2-like superfamily protein.


Assuntos
Malária , Plasmodium berghei , Humanos , Plasmodium berghei/genética , Transporte Ativo do Núcleo Celular , Saccharomyces cerevisiae , RNA Mensageiro
2.
ACS Infect Dis ; 9(7): 1303-1309, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37321567

RESUMO

Artemisinins have been used as first-line drugs worldwide to treat malaria caused by Plasmodium falciparum; however, its underlying mechanism is still unclear. This study aimed to identify the factors inducing growth inhibition via pyknosis, a state of intraerythrocytic developmental arrest, when exposing the parasite to dihydroartemisinin (DHA). Changes in the expression of genome-wide transcripts were assessed in the parasites treated with antimalarials, revealing the specific downregulation of zinc-associated proteins by DHA. The quantification of zinc levels in DHA-treated parasite indicated abnormal zinc depletion. Notably, the zinc-depleted condition in the parasite produced by a zinc chelator induced the generation of a pyknotic form and the suppression of its proliferation. The evaluation of the antimalarial activity of DHA or a glutathione-synthesis inhibitor in the zinc-depleted state showed that the disruption of zinc and glutathione homeostasis synergistically potentiated the growth inhibition of P. falciparum through pyknosis. These findings could help further understand the antimalarial actions of artemisinins for advancing malaria therapy.


Assuntos
Antimaláricos , Artemisininas , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum , Artemisininas/farmacologia , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Homeostase , Glutationa
3.
Parasites Hosts Dis ; 61(1): 33-41, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37170462

RESUMO

The discovery of new antimalarial drugs can be developed using asynchronized Plasmodium berghei malaria parasites in vivo in mice. Studies on a particular stage are also required to assess the effectiveness and mode of action of drugs. In this report, we used endoperoxide 6-(1,2,6,7-tetraoxaspiro [7.11] nonadec-4-yl) hexan-1-ol (N-251) as a model antimalarial compound on P. chabaudi parasites. We examined the antimalarial effect of N-251 against ring-stage- and trophozoite-stage-rich P. chabaudi parasites and asynchronized P. berghei parasites using the 4-day suppressive test. The ED50 values were 27, 22, and 22 mg/kg, respectively, and the antimalarial activity of N-251 was verified in both rodent malaria parasites. To assess the stage-specific effect of N-251 in vivo, we evaluated the change of parasitemia and distribution of parasite stages using ring-stage- and trophozoite-stage-rich P. chabaudi parasites with one-day drug administration for one life cycle. We discovered that the parasitemias decreased after 13 and 9 hours post-treatment in the ring-stage- and trophozoite-stage-rich groups, respectively. Additionally, in the ring-stage-rich N-251 treated group, the ring-stage parasites hindered trophozoite parasite development. For the trophozoite-stage-rich N-251 treated group, the distribution of the trophozoite stage was maintained without a change in parasitemia until 9 hours. Because of these findings, it can be concluded that N-251 suppressed the trophozoite stage but not the ring stage. We report for the first time that N-251 specifically suppresses the trophozoite stage using P. chabaudi in mice. The results show that P. chabaudi is a reliable model for the characterization of stage-specific antimalarial effects.


Assuntos
Antimaláricos , Malária , Plasmodium chabaudi , Camundongos , Animais , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Parasitemia/tratamento farmacológico , Plasmodium berghei
4.
Biochem Biophys Res Commun ; 637: 58-65, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375251

RESUMO

Malaria is an infectious disease caused by Plasmodium parasites and has high mortality rates, especially among children in African and Southeast Asian countries. Patients with hemolytic anemia are suggested to adapt protective measures against malarial infection. Nicotinamide adenine dinucleotide (NAD+) is a crucial cofactor associated with numerous biological processes that maintain homeostasis in all living organisms. In a previous study, we had demonstrated that the deficiency of nicotinamide mononucleotide adenylyltransferase 3 (Nmnat3), an enzyme catalyzing NAD+ synthesis, causes hemolytic anemia accompanied by a drastic decline in the NAD+ levels in the erythrocytes. It is well known that hemolytic anemia is linked to a reduced risk of malarial infections. In the present study, we investigated whether hemolytic anemia caused by Nmnat3 deficiency is beneficial against malarial infections. We found that Nmnat3 deficiency exacerbated malarial infection and subsequently caused death. Moreover, we demonstrated that the NAD+ levels in malaria-infected Nmnat3 red blood cells significantly increased and the glycolytic flow was largely enhanced to support the rapid growth of malarial parasites. Our results revealed that hemolytic anemia induced by the deletion of Nmnat3 was harmful rather than protective against malaria.


Assuntos
Anemia Hemolítica , Malária , Nicotinamida-Nucleotídeo Adenililtransferase , Criança , Humanos , Anemia Hemolítica/complicações , Anemia Hemolítica/genética , Eritrócitos/metabolismo , Malária/complicações , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Animais
5.
Bioorg Med Chem ; 66: 116830, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594648

RESUMO

The identification, structure-activity relationships (SARs), and biological effects of new antimalarials consisting of a 2,3,4,9-tetrahydro-1H-ß-carboline core, a coumarin ring, and an oxyalkanoyl linker are described. A cell-based phenotypic approach was employed in this search for novel antimalarial drugs with unique modes of action. Our screening campaign of the RIKEN compound library succeeded in the identification of the known tetrahydro-ß-carboline derivative (4e) as a hit compound showing significant in vitro activity. SAR studies on this chemical series led to the discovery of compound 4h having a (R)-methyl group on the oxyacetyl linker with potent inhibition of parasite growth (IC50 = 2.0 nM). Compound 4h was also found to exhibit significant in vivo antimalarial effects in mouse models. Furthermore, molecular modeling studies on 4e, 4h, and its diastereomer (4j) suggested that the (R)-methyl group of 4h forces the preferential adoption of a specific conformer which is considered to be an active conformer.


Assuntos
Antimaláricos , Animais , Antimaláricos/farmacologia , Carbolinas/química , Carbolinas/farmacologia , Cumarínicos/farmacologia , Camundongos , Relação Estrutura-Atividade
6.
Malar J ; 20(1): 462, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906158

RESUMO

BACKGROUND: Liver disease is a common feature of malaria in pregnancy, but its pathogenesis remains unclear. METHODS: To understand the pathogenesis of liver disease during malaria in pregnancy, comparative proteomic analysis of the liver in a mouse model of malaria in pregnancy was performed. RESULTS: Decreased levels of mitochondrial and peroxisomal proteins were observed in the livers of pregnant mice infected with the lethal rodent malaria parasite Plasmodium berghei strain NK65. By contrast, increased levels of perilipin-2, amyloid A-1, and interferon (IFN)-γ signalling pathway-related proteins were observed in the livers of infected pregnant mice, suggesting that IFN-γ signalling may contribute to the development of liver disease during malaria in pregnancy. IFN-γ signalling is a potential trigger of inducible nitric oxide synthase (iNOS) expression. Liver disease associated with microvesicular fatty infiltration and elevated liver enzymes in pregnant wild-type mice infected with malaria parasites was improved by iNOS deficiency. CONCLUSIONS: In this study, a causative role of iNOS in liver disease associated with microvesicular fatty infiltration during malaria in pregnancy was demonstrated. These findings provide important insight for understanding the role of iNOS-mediated metabolic responses and the pathogenesis of high-risk liver diseases in pregnancy, such as acute fatty liver.


Assuntos
Fígado Gorduroso/metabolismo , Malária/complicações , Óxido Nítrico/metabolismo , Plasmodium berghei/fisiologia , Complicações Parasitárias na Gravidez/metabolismo , Doença Aguda , Animais , Modelos Animais de Doenças , Feminino , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Complicações Parasitárias na Gravidez/parasitologia
7.
Front Cell Infect Microbiol ; 11: 737457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604117

RESUMO

The quality control and export of mRNA by RNA-binding proteins are necessary for the survival of malaria parasites, which have complex life cycles. Nuclear poly(A) binding protein 2 (NAB2), THO complex subunit 4 (THO4), nucleolar protein 3 (NPL3), G-strand binding protein 2 (GBP2) and serine/arginine-rich splicing factor 1 (SR1) are involved in nuclear mRNA export in malaria parasites. However, their roles in asexual and sexual development, and in cellular localization, are not fully understood. In this study using the rodent malaria parasite, Plasmodium berghei, we found that NAB2 and SR1, but not THO4, NPL3 or GBP2, played essential roles in the asexual development of malaria parasites. By contrast, GBP2 but not NPL3 was involved in male and female gametocyte production. THO4 was involved in female gametocyte production, but had a lower impact than GBP2. In this study, we focused on GBP2 and NAB2, which play important roles in the sexual and asexual development of malaria parasites, respectively, and examined their cellular localization. GBP2 localized to both the nucleus and cytoplasm of malaria parasites. Using immunoprecipitation coupled to mass spectrometry (IP-MS), GBP2 interacted with the proteins ALBA4, DOZI, and CITH, which play roles in translational repression. IP-MS also revealed that phosphorylated adapter RNA export protein (PHAX) domain-containing protein, an adaptor protein for exportin-1, also interacted with GBP2, implying that mRNA export occurs via the PHAX domain-containing protein pathway in malaria parasites. Live-cell fluorescence imaging revealed that NAB2 localized at the nuclear periphery. Moreover, IP-MS indicated that NAB2 interacted with transportin. RNA immunoprecipitation coupled to RNA sequencing revealed that NAB2 bound directly to 143 mRNAs, including those encoding 40S and 60S ribosomal proteins. Our findings imply that malaria parasites use an evolutionarily ancient mechanism conserved throughout eukaryotic evolution.


Assuntos
Malária , Parasitos , Animais , Feminino , Masculino , Proteínas de Transporte Nucleocitoplasmático , Parasitos/metabolismo , Proteínas de Ligação a RNA
8.
PLoS One ; 16(10): e0258491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34644348

RESUMO

Mastitis is an inflammation of the mammary gland in the breast and is typically due to bacterial infection. In malaria-endemic areas, mastitis with accompanying fever can be challenging to differentiate from malaria. At the same time, it is unclear whether malaria infection is directly involved in the development of mastitis. In the present study, whether mastitis develops during infection with malaria parasites was investigated using a rodent malaria model with Plasmodium berghei (P. berghei; Pb) ANKA. The course of parasitemia in postpartum mice infected with Pb ANKA was similar to the course in infected virgin mice. However, infected postpartum mice died earlier than did infected virgin mice. In addition, the weight of pups from mice infected with Pb ANKA was significantly reduced compared with pups from uninfected mice. The macroscopic and histological analyses showed apparent changes, such as destruction of the alveolus wall and extensive presence of leukocytes, in mammary gland tissue in mice infected during the postpartum period. The findings suggest that women during the postpartum period are more vulnerable to complications when infected with malaria parasites, particularly women who do not acquire protective immunity against malaria parasites. Based on the proteomic analysis, IFN-γ signaling pathway-related proteins in mammary gland tissue of the infected postpartum mice were increased. Our results indicate that inflammation induced by IFN-γ, a proinflammatory cytokine, may contribute to negative histological changes in mammary gland tissue of postpartum mice infected with Pb ANKA. In IFN-γ receptor 1-deficient (IFNGR1-KO) mice, the histological changes in mammary gland tissue of the infected postpartum wild-type mice were improved to almost normal mammary gland structure. Furthermore, weight loss in pups delivered by infected IFNGR1-KO postpartum mice was not observed. Taken together, these findings indicate that inflammation induced by IFN-γ is associated with development of mastitis in postpartum mice infected with Pb ANKA. The present study results may increase our understanding of how disease aggravation occurs during postpartum malaria.


Assuntos
Malária/patologia , Glândulas Mamárias Animais/metabolismo , Animais , Modelos Animais de Doenças , Eritrócitos/parasitologia , Eritrócitos/patologia , Feminino , Interferon gama/metabolismo , Malária/fisiopatologia , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/análise , Plasmodium berghei/patogenicidade , Período Pós-Parto , Gravidez , Proteômica , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Transdução de Sinais/genética , Regulação para Cima , Receptor de Interferon gama
9.
Sci Rep ; 11(1): 11508, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075087

RESUMO

IL-17A and IL-17F are both involved in the pathogenesis of neutrophilic inflammation observed in COPD and severe asthma. To explore this, mice deficient in both Il17a and Il17f and wild type (WT) mice were exposed to cigarette smoke or environmental air for 5 to 28 days and changes in inflammatory cells in bronchoalveolar lavage (BAL) fluid were determined. We also measured the mRNA expression of keratinocyte derived chemokine (Kc), macrophage inflammatory protein-2 (Mip2), granulocyte-macrophage colony stimulating factor (Gmcsf) and matrix metalloproteinase-9 (Mmp9 ) in lung tissue after 8 days, and lung morphometric changes after 24 weeks of exposure to cigarette smoke compared to air-exposed control animals. Macrophage counts in BAL fluid initially peaked at day 8 and again on day 28, while neutrophil counts peaked between day 8 and 12 in WT mice. Mice dual deficient with Il17a and 1l17f showed similar kinetics with macrophages and neutrophils, but cell numbers at day 8 and mRNA expression of Kc, Gmcsf and Mmp9 were significantly reduced. Furthermore, airspaces in WT mice became larger after cigarette smoke exposure for 24 weeks, whereas this was not seen dual Il17a and 1l17f deficient mice. Combined Il17a and Il17f deficiency resulted in significant attenuation of neutrophilic inflammatory response and protection against structural lung changes after long term cigarette smoke exposure compared with WT mice. Dual IL-17A/F signalling plays an important role in pro-inflammatory responses associated with histological changes induced by cigarette smoke exposure.


Assuntos
Fumar Cigarros , Regulação da Expressão Gênica/imunologia , Interleucina-17/deficiência , Pulmão/imunologia , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Doença Aguda , Animais , Doença Crônica , Fumar Cigarros/genética , Fumar Cigarros/imunologia , Citocinas/genética , Citocinas/imunologia , Feminino , Interleucina-17/imunologia , Macrófagos/imunologia , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Camundongos , Camundongos Mutantes , Neutrófilos/imunologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia
10.
Parasitol Int ; 76: 102059, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31958569

RESUMO

G-strand binding protein 2 (GBP2) is a Ser/Arg-rich (SR) protein involved in mRNA surveillance and nuclear mRNA quality control in yeast. However, the roles of GBP2 in virulence and sexual development in Plasmodium parasites are unclear, although GBP2 is involved in the asexual development of Plasmodium berghei, the rodent malaria parasite. In this study, we investigated the role of GBP2 in virulence and sexual development of P. berghei using gbp2-deleted P. berghei (Δgbp2 parasites). Then, to identify factors affected by gbp2 deletion, we performed a comparative proteomic analysis of the Δgbp2 parasites. We found that GBP2 was not associated with the development of experimental cerebral malaria during infection with P. berghei, but asexual development of the parasite was delayed with deletion of gbp2. However, the development of P. berghei gametocytes was significantly reduced with deletion of gbp2. Comparative proteomic analysis revealed that the levels of adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) in Δgbp2 parasites were significantly higher than those in wild-type (WT) parasites, suggesting that biosynthesis of purine nucleotides may be involved in function of GBP2. Therefore, we investigated the effect of purine starvation on the sexual development and proteome. In nt1-deleted P. berghei (Δnt1 parasites), the production of male and female gametocytes was significantly reduced compared to that in WT parasites. Moreover, we found that protein levels of GBP2 in Δnt1 parasites were markedly lower than in WT parasites. These findings suggest that GBP2 is primarily involved in the sexual development of malaria parasites, and its function may be suppressed by purine starvation.


Assuntos
Malária Cerebral/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Proteínas de Protozoários/genética , Animais , Eritrócitos/parasitologia , Feminino , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/patogenicidade , Proteômica , Nucleotídeos de Purina/biossíntese , Organismos Livres de Patógenos Específicos
11.
Immunology ; 155(4): 519-532, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144035

RESUMO

It is unclear whether γδ T cells are involved in humoral immunity against Plasmodium infection. Here, we show that B-cell-immunodeficient mice and γδ T-cell-deficient mice were incapable of protecting against Plasmodium berghei XAT parasites. γδ T-cell-deficient mice developed reduced levels of antigen-specific antibodies during the late phase of infection. The numbers of follicular helper T cells and germinal centre B cells in γδ T-cell-deficient mice were lower than in wild-type mice during the late phase of infection. Expression profiling of humoral immunity-related cytokines in γδ T cells showed that interleukin-21 (IL-21) and interferon-γ (IFN-γ) are increased during the early stage of infection. Furthermore, blockade of IL-21 and IFN-γ signalling during the early stage of infection led to reduction in follicular helper T cells and germinal centre B cells. γδ T-cell production of IL-21 and IFN-γ is crucial for the development and maintenance of follicular helper T cells and germinal centre B cells during the late phase of infection. Our data suggest that γδ T cells modulate humoral immunity against Plasmodium infection.


Assuntos
Imunidade Humoral/imunologia , Interferon gama/metabolismo , Interleucinas/metabolismo , Malária/imunologia , Plasmodium berghei/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Contagem de Linfócito CD4 , Feminino , Centro Germinativo/citologia , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Auxiliares-Indutores/citologia
12.
Exp Parasitol ; 185: 1-9, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29307564

RESUMO

Plasmodium berghei (Pb) XAT, a rodent malaria parasite, is an irradiation-attenuated variant derived from the lethal strain Pb NK65. Differences in genome sequence, protein structure and function between Pb XAT and Pb NK65 are currently unknown. In this study, to investigate genetic alterations in Pb XAT, we performed comparative genomics and proteomics analyses of nonlethal and lethal strains of Pb. We found mutations, such as a deletion mutation in rhoptry-associated protein (rap) 1, and deletion of rap2/3 and skeleton-binding protein 1 (sbp1), in Pb XAT. RAP1 is required for targeting of RAP2 to the rhoptries. However, the contribution of RAP2/3 to the lethality of Plasmodium is unclear. Therefore, we generated RAP1- and RAP2/3-deficient mutants of Pb ANKA, a reference strain of P. berghei. Furthermore, we investigated the effect of RAP1 and RAP2/3 deficiency on the outcome of infection. The parasitemia in mice infected with RAP1-deficient parasites was increased compared to that in control parasite-infected mice during the early phase of infection. However, mice infected with RAP1-deficient parasites survived longer than did control parasite-infected mice. Moreover, mice infected with RAP2/3-deficient parasites showed low levels of parasitemia and ultimately recovered from the infection The aim of this study was to investigate the effect of RAP2/3 expression on the outcome of infection with Pb XAT using a RAP2/3-expressing Pb XAT. Results showed that complementation of RAP2/3 expression in Pb XAT partially restored virulence. Our findings suggest that RAP1 and RAP2/3 contribute to virulence and a decrease in their expression explains the loss of virulence of the Pb XAT strain.


Assuntos
Genômica , Malária/parasitologia , Plasmodium berghei/patogenicidade , Proteômica , Animais , Cromatografia Líquida , DNA de Protozoário/química , DNA de Protozoário/genética , Eritrócitos/parasitologia , Feminino , Malária/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Reação em Cadeia da Polimerase/métodos , Proteínas de Protozoários/genética , Transcrição Reversa , Deleção de Sequência , Organismos Livres de Patógenos Específicos , Espectrometria de Massas em Tandem , Virulência
13.
PLoS One ; 12(11): e0185392, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117241

RESUMO

Complicated/severe cases of placental pathology due to Plasmodium falciparum and P. vivax, especially adverse pregnancy outcomes during P. vivax infection, have been increasing in recent years. However, the pathogenesis of placental pathology during severe malaria is poorly understood, while responses against IFN-γ are thought to be associated with adverse pregnancy outcomes. In the present study, we explored the role of IFN-γ receptor 1 (IFNGR1) signaling in placental pathology during severe malaria using luciferase-expressing rodent malaria parasites, P. berghei NK65 (PbNK65L). We detected luciferase activities in the lung, spleen, adipose tissue, and placenta in pregnant mice, suggesting that infected erythrocytes could accumulate in various organs during infection. Importantly, we found that fetal mortality in IFNGR1-deficient mice infected with PbNK65L parasites was much less than in infected wild type (WT) mice. Placental pathology was also improved in IFNGR1-deficient mice. In contrast, bioluminescence imaging showed that parasite accumulation in the placentas of IFNGR1-deficient pregnant mice was comparable to that in WT mice infected with PbNK65L. These findings suggest that IFNGR1 signaling plays a pivotal role in placental pathology and subsequent adverse pregnancy outcomes during severe malaria. Our findings may increase our understanding of how disease aggravation occurs during malaria during pregnancy.


Assuntos
Eritrócitos/patologia , Malária Vivax/genética , Complicações Parasitárias na Gravidez/genética , Receptores de Interferon/genética , Tecido Adiposo/parasitologia , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Eritrócitos/parasitologia , Feminino , Predisposição Genética para Doença , Humanos , Pulmão/parasitologia , Pulmão/patologia , Malária Vivax/parasitologia , Malária Vivax/patologia , Camundongos , Placenta/parasitologia , Placenta/patologia , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Complicações Parasitárias na Gravidez/patologia , Resultado da Gravidez , Receptores de Interferon/deficiência , Transdução de Sinais , Baço/parasitologia , Baço/patologia , Receptor de Interferon gama
14.
PLoS One ; 12(9): e0184874, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934264

RESUMO

Malaria continues to be a devastating disease, largely caused by Plasmodium falciparum infection. We investigated the effects of opioid and cannabinoid receptor antagonists on the growth of intraerythrocytic P. falciparum. The delta opioid receptor antagonist 7-benzylidenenaltrexone (BNTX) and the cannabinoid receptor antagonists rimonaband and SR144528 caused growth arrest of the parasite. Notably BNTX and the established antimalarial drug dihydroartemisinin induced prominent pyknosis in parasite cells after a short period of incubation. We compared genome-wide transcriptome profiles in P. falciparum with different degrees of pyknosis in response to drug treatment, and identified 11 transcripts potentially associated with the evoking of pyknosis, of which three, including glutathione reductase (PfGR), triose phosphate transporter (PfoTPT), and a conserved Plasmodium membrane protein, showed markedly different gene expression levels in accordance with the degree of pyknosis. Furthermore, the use of specific inhibitors confirmed PfGR but not PfoTPT as a possible factor contributing to the development of pyknosis. A reduction in total glutathione levels was also detected in association with increased pyknosis. These results further our understanding of the mechanisms responsible for P. falciparum development and the antimalarial activity of dihydroartemisinin, and provide useful information for the development of novel antimalarial agents.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Entorpecentes/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Compostos de Benzilideno/farmacologia , Canfanos/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Glutationa/metabolismo , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Oxirredução , Piperidinas/farmacologia , Plasmodium falciparum/crescimento & desenvolvimento , Pirazóis/farmacologia , Rimonabanto , Transcriptoma/efeitos dos fármacos
15.
Malar J ; 16(1): 247, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28606087

RESUMO

BACKGROUND: Aspartate, which is converted from oxaloacetate (OAA) by aspartate aminotransferase, is considered an important precursor for purine salvage and pyrimidine de novo biosynthesis, and is thus indispensable for the growth of Plasmodium parasites at the asexual blood stages. OAA can be produced in malaria parasites via two routes: (i) from phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (PEPC) in the cytosol, or (ii) from fumarate by consecutive reactions catalyzed by fumarate hydratase (FH) and malate:quinone oxidoreductase (MQO) in the mitochondria of malaria parasites. Although PEPC-deficient Plasmodium falciparum and Plasmodium berghei (rodent malaria) parasites show a growth defect, the mutant P. berghei can still cause experimental cerebral malaria (ECM) with similar dynamics to wild-type parasites. In contrast, the importance of FH and MQO for parasite viability, growth and virulence is not fully understood because no FH- and MQO-deficient P. falciparum has been established. In this study, the role of FH and MQO in the pathogenicity of asexual-blood-stage Plasmodium parasites causing cerebral malaria was examined. RESULTS: First, FH- and MQO-deficient parasites were generated by inserting a luciferase-expressing cassette into the fh and mqo loci in the genome of P. berghei ANKA strain. Second, the viability of FH-deficient and MQO-deficient parasites that express luciferase was determined by measuring luciferase activity, and the effect of FH or MQO deficiency on the development of ECM was examined. While the viability of FH-deficient P. berghei was comparable to that of control parasites, MQO-deficient parasites exhibited considerably reduced viability. FH activity derived from erythrocytes was also detected. This result and the absence of phenotype in FH-deficient P. berghei parasites suggest that fumarate can be metabolized to malate by host or parasite FH in P. berghei-infected erythrocytes. Furthermore, although the growth of FH- and MQO-deficient parasites was impaired, the development of ECM was suppressed only in mice infected with MQO-deficient parasites. CONCLUSIONS: These findings suggest that MQO-mediated mitochondrial functions are required for development of ECM of asexual-blood-stage Plasmodium parasites.


Assuntos
Malária Cerebral/prevenção & controle , Mitocôndrias/enzimologia , Oxirredutases/antagonistas & inibidores , Plasmodium berghei/enzimologia , Animais , Barreira Hematoencefálica/metabolismo , Eritrócitos/parasitologia , Feminino , Fumarato Hidratase/antagonistas & inibidores , Fumarato Hidratase/deficiência , Fumarato Hidratase/fisiologia , Fumaratos/metabolismo , Malatos/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Ácido Oxaloacético/metabolismo , Oxirredutases/deficiência , Oxirredutases/fisiologia , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Organismos Livres de Patógenos Específicos
16.
Eur J Immunol ; 47(4): 685-691, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28012161

RESUMO

γδ T cells play a crucial role in controlling malaria parasites. Dendritic cell (DC) activation via CD40 ligand (CD40L)-CD40 signaling by γδ T cells induces protective immunity against the blood-stage Plasmodium berghei XAT (PbXAT) parasites in mice. However, it is unknown which γδ T-cell subset has an effector role and is required to control the Plasmodium infection. Here, using antibodies to deplete TCR Vγ1+ cells, we saw that Vγ1+ γδ T cells were important for the control of PbXAT infection. Splenic Vγ1+ γδ T cells preferentially expand and express CD40L, and both Vγ1+ and Vγ4+ γδ T cells produce IFN-γ during infection. Although expression of CD40L on Vγ1+ γδ T cells is maintained during infection, the IFN-γ positivity of Vγ1+ γδ T cells is reduced in late-phase infection due to γδ T-cell dysfunction. In Plasmodium-infected IFN-γ signaling-deficient mice, DC activation is reduced, resulting in the suppression of γδ T-cell dysfunction and the dampening of γδ T-cell expansion in the late phase of infection. Our data suggest that Vγ1+ γδ T cells represent a major subset responding to PbXAT infection and that the Vγ1+ γδ T-cell response is dependent on IFN-γ-activated DCs.


Assuntos
Células Dendríticas/imunologia , Malária/imunologia , Plasmodium berghei/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Animais , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Imunidade Inata , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/genética , Transdução de Sinais
17.
Sci Rep ; 6: 36971, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845384

RESUMO

In this study, we investigated the mutation tendency of a mutator rodent malaria parasite, Plasmodium berghei, with proofreading-deficient DNA polymerase δ. Wild-type and mutator parasites were maintained in mice for over 24 weeks, and the genome-wide accumulated mutations were determined by high-throughput sequencing. The mutator P. berghei had a significant preference for C/G to A/T substitutions; thus, its genome had a trend towards a higher AT content. The mutation rate was influenced by the sequence context, and mutations were markedly elevated at TCT. Some genes mutated repeatedly in replicate passage lines. In particular, knockout mutations of the AP2-G gene were frequent, which conferred strong growth advantages on parasites during the blood stage but at the cost of losing the ability to form gametocytes. This is the first report to demonstrate a biased mutation tendency in malaria parasites, and its results help to promote our basic understanding of Plasmodium genetics.


Assuntos
DNA Polimerase III/genética , Plasmodium berghei/genética , Proteínas de Protozoários/genética , Animais , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , DNA de Protozoário/metabolismo , Análise Discriminante , Eritrócitos/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Mutação , Análise de Sequência de DNA
18.
PLoS Pathog ; 12(3): e1005507, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26991425

RESUMO

Emergency myelopoiesis is inflammation-induced hematopoiesis to replenish myeloid cells in the periphery, which is critical to control the infection with pathogens. Previously, pro-inflammatory cytokines such as interferon (IFN)-α and IFN-γ were demonstrated to play a critical role in the expansion of hematopoietic stem cells (HSCs) and myeloid progenitors, leading to production of mature myeloid cells, although their inhibitory effects on hematopoiesis were also reported. Therefore, the molecular mechanism of emergency myelopoiesis during infection remains incompletely understood. Here, we clarify that one of the interleukin (IL)-6/IL-12 family cytokines, IL-27, plays an important role in the emergency myelopoiesis. Among various types of hematopoietic cells in bone marrow, IL-27 predominantly and continuously promoted the expansion of only Lineage-Sca-1+c-Kit+ (LSK) cells, especially long-term repopulating HSCs and myeloid-restricted progenitor cells with long-term repopulating activity, and the differentiation into myeloid progenitors in synergy with stem cell factor. These progenitors expressed myeloid transcription factors such as Spi1, Gfi1, and Cebpa/b through activation of signal transducer and activator of transcription 1 and 3, and had enhanced potential to differentiate into migratory dendritic cells (DCs), neutrophils, and mast cells, and less so into macrophages, and basophils, but not into plasmacytoid DCs, conventional DCs, T cells, and B cells. Among various cytokines, IL-27 in synergy with the stem cell factor had the strongest ability to augment the expansion of LSK cells and their differentiation into myeloid progenitors retaining the LSK phenotype over a long period of time. The experiments using mice deficient for one of IL-27 receptor subunits, WSX-1, and IFN-γ revealed that the blood stage of malaria infection enhanced IL-27 expression through IFN-γ production, and the IL-27 then promoted the expansion of LSK cells, differentiating and mobilizing them into spleen, resulting in enhanced production of neutrophils to control the infection. Thus, IL-27 is one of the limited unique cytokines directly acting on HSCs to promote differentiation into myeloid progenitors during emergency myelopoiesis.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Interleucinas/metabolismo , Mielopoese/fisiologia , Animais , Linfócitos B/efeitos dos fármacos , Medula Óssea/fisiologia , Diferenciação Celular , Linhagem da Célula , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/fisiologia , Células Progenitoras Mieloides/fisiologia , Transdução de Sinais , Baço/fisiologia
19.
Curr Top Med Chem ; 16(27): 3048-3057, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881705

RESUMO

Malaria is one of the world's most devastating diseases, particularly in the tropics. In humans, Plasmodium falciparum lives mainly within red blood cells, and malaria pathogenesis depends on the red blood cells being infected with the parasite. Nonesterified fatty acids (NEFAs), including cis-9-octadecenoic acid, and phospholipids have been critical for complete parasite growth in serum-free culture, although the efficacy of NEFAs in sustaining the growth of P. falciparum has varied markedly. Hexadecanoic acid and trans-9-octadecenoic acid have arrested development of the parasite, in association with down-regulation of genes encoding copper-binding proteins. Selective removal of Cu+ ions has blockaded completely the ring-trophozoite-schizont progression of the parasite. The importance of copper homeostasis for the developmental progression of P. falciparum has been confirmed by inhibition of copper-binding proteins that regulate copper physiology and function by associating with copper ions. These data have provided strong evidence for a link between healthy copper homeostasis and successive developmental progression of P. falciparum. Perturbation of copper homeostasis may be, thus, instrumental in drug and vaccine development for the malaria medication. We review the importance of copper homeostasis in the asexual growth of P. falciparum in relation to NEFAs, copperbinding proteins, apoptosis, mitochondria, and gene expression.


Assuntos
Cobre/metabolismo , Eritrócitos/parasitologia , Homeostase , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Meios de Cultura Livres de Soro , Progressão da Doença , Humanos , Malária Falciparum/sangue , Malária Falciparum/patologia
20.
Exp Lung Res ; 41(10): 525-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26651880

RESUMO

AIM OF THE STUDY: Interleukin (IL)-10 is an anti-inflammatory cytokine, but its role in cigarette smoke (CS)-induced inflammation and chronic obstructive pulmonary disease (COPD) has not been fully elucidated. The purpose of this study was to investigate the effect of IL-10 deficiency on CS-induced pulmonary inflammation in mice in vivo and in vitro. MATERIALS AND METHODS: IL-10-deficient and wild-type control mice with a C57BL6/J genetic background were exposed to CS, and inflammatory cells in bronchoalveolar lavage fluid (BALF) and mRNA of cytokines in lung were evaluated with enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR). RESULTS: During 12 days of daily CS exposure to wild-type mice, neutrophil counts in BAL fluid and tumor necrosis factor (TNF)-α mRNA expression were increased, peaked at day 8, and then declined on day 12 when the level of IL-10 reached its peak. In IL-10-deficient mice, neutrophil recruitment and TNF-α mRNA levels induced by CS exposure were significantly greater than those in wild-type mice. Keratinocyte-derived chemokine (KC; murine ortholog of human CXCL8) and granulocyte macrophage colony-stimulating factor (GM-CSF) mRNA levels or matrix metalloproteinase(MMP)-9 protein levels were not correlated with neutrophil count. CONCLUSIONS: IL-10 had a modulatory effect on CS-induced pulmonary neutrophilic inflammation and TNF-α expression in mice in vivo and therefore appears to be an important endogenous suppressor of airway neutrophilic inflammation.


Assuntos
Interleucina-10/fisiologia , Infiltração de Neutrófilos , Nicotiana/efeitos adversos , Pneumonia/etiologia , Fumaça/efeitos adversos , Animais , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Metaloproteinase 9 da Matriz/análise , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA